14,832 research outputs found

    The Effect of Hydrostatic Weighting on the Vertical Temperature Structure of the Solar Corona

    Full text link
    We investigate the effect of hydrostatic scale heights λ(T){\lambda}(T) in coronal loops on the determination of the vertical temperature structure T(h)T(h) of the solar corona. Every method that determines an average temperature at a particular line-of-sight from optically thin emission (e.g. in EUV or soft X-ray wavelengths) of a mutli-temperature plasma, is subject to the emission measure-weighted contributions dEM(T)/dTdEM(T)/dT from different temperatures. Because most of the coronal structures (along open or closed field lines) are close to hydrostatic equilibrium, the hydrostatic temperature scale height introduces a height-dependent weighting function that causes a systematic bias in the determination of the temperature structure T(h)T(h) as function of altitude hh. The net effect is that the averaged temperature seems to increase with altitude, dT(h)/dh>0dT(h)/dh > 0, even if every coronal loop (of a multi-temperature ensemble) is isothermal in itself. We simulate this effect with differential emission measure distributions observed by {\sl SERTS} for an instrument with a broadband temperature filter such as {\sl Yohkoh/SXT} and find that the apparent temperature increase due to hydrostatic weighting is of order \Delta T \approx T_0 \times h/r_{\sun}. We suggest that this effect largely explains the systematic temperature increase in the upper corona reported in recent studies (e.g. by Sturrock et al., Wheatland et al., or Priest et al.), rather than being an intrinsic signature of a coronal heating mechanism.Comment: 7 pages, 3 figures. ApJ Letters, accepted 2000 April 6, in pres

    Immense magnetic response of exciplex light emission due to correlated spin-charge dynamics

    Full text link
    As carriers slowly move through a disordered energy landscape in organic semiconductors, tiny spatial variations in spin dynamics relieve spin blocking at transport bottlenecks or in the electron-hole recombination process that produces light. Large room-temperature magnetic-field effects (MFE) ensue in the conductivity and luminescence. Sources of variable spin dynamics generate much larger MFE if their spatial structure is correlated on the nanoscale with the energetic sites governing conductivity or luminescence such as in co-evaporated organic blends within which the electron resides on one molecule and the hole on the other (an exciplex). Here we show that exciplex recombination in blends exhibiting thermally-activated delayed fluorescence (TADF) produces MFE in excess of 60% at room temperature. In addition, effects greater than 4000% can be achieved by tuning the device's current-voltage response curve by device conditioning. These immense MFEs are both the largest reported values for their device type at room temperature. Our theory traces this MFE and its unusual temperature dependence to changes in spin mixing between triplet exciplexes and light-emitting singlet exciplexes. In contrast, spin mixing of excitons is energetically suppressed, and thus spin mixing produces comparatively weaker MFE in materials emitting light from excitons by affecting the precursor pairs. Demonstration of immense MFE in common organic blends provides a flexible and inexpensive pathway towards magnetic functionality and field sensitivity in current organic devices without patterning the constituent materials on the nanoscale. Magnetic fields increase the power efficiency of unconditioned devices by 30% at room temperature, also showing that magnetic fields may increase the efficiency of the TADF process.Comment: 12 pages, PRX in pres

    Liquid-liquid interfacial tension of electrolyte solutions

    Full text link
    It is theoretically shown that the excess liquid-liquid interfacial tension between two electrolyte solutions as a function of the ionic strength I behaves asymptotically as O(- I^0.5) for small I and as O(+- I) for large I. The former regime is dominated by the electrostatic potential due to an unequal partitioning of ions between the two liquids whereas the latter regime is related to a finite interfacial thickness. The crossover between the two asymptotic regimes depends sensitively on material parameters suggesting that, depending on the actual system under investigation, the experimentally accessible range of ionic strengths can correspond to either the small or the large ionic strength regime. In the limiting case of a liquid-gas surface where ion partitioning is absent, the image chage interaction can dominate the surface tension for small ionic strength I such that an Onsager-Samaras limiting law O(- I ln(I)) is expected. The proposed picture is consistent with more elaborate models and published measurements.Comment: Accepted for publication in Physical Review Letter

    Effective chiral restoration in the rho'-meson in lattice QCD

    Full text link
    In simulations with dynamical quarks it has been established that the ground state rho in the infrared is a strong mixture of the two chiral representations (0,1)+(1,0) and (1/2,1/2)_b. Its angular momentum content is approximately the 3S1 partial wave which is consistent with the quark model. Effective chiral restoration in an excited rho-meson would require that in the infrared this meson couples predominantly to one of the two representations. The variational method allows one to study the mixing of interpolators with different chiral transformation properties in the non-perturbatively determined excited state at different resolution scales. We present results for the first excited state of the rho-meson using simulations with n_f=2 dynamical quarks. We point out, that in the infrared a leading contribution to rho'= rho(1450) comes from (1/2,1/2)_b, in contrast to the rho. Its approximate chiral partner would be a h_1(1380) state. The rho' wave function contains a significant contribution of the 3D1 wave which is not consistent with the quark model prediction.Comment: 4 pp, a few short remarks have been added, a reference updated. To appear in PR

    Condensate density and superfluid mass density of a dilute Bose gas near the condensation transition

    Full text link
    We derive, through analysis of the structure of diagrammatic perturbation theory, the scaling behavior of the condensate and superfluid mass density of a dilute Bose gas just below the condensation transition. Sufficiently below the critical temperature, TcT_c, the system is governed by the mean field (Bogoliubov) description of the particle excitations. Close to TcT_c, however, mean field breaks down and the system undergoes a second order phase transition, rather than the first order transition predicted in Bogoliubov theory. Both condensation and superfluidity occur at the same critical temperature, TcT_c and have similar scaling functions below TcT_c, but different finite size scaling at TcT_c to leading order in the system size. Through a simple self-consistent two loop calculation we derive the critical exponent for the condensate fraction, 2β≃0.662\beta\simeq 0.66.Comment: 4 page

    Agrin isoforms and their role in synaptogenesis

    Get PDF
    Agrin is thought to mediate the motor neuron-induced aggregation of synaptic proteins on the surface of muscle fibers at neuromuscular junctions. Recent experiments provide direct evidence in support of this hypothesis, reveal the nature of agrin immunoreactivity at sites other than neuromuscular junctions, and have resulted in findings that are consistent with the possibility that agrin plays a role in synaptogenesis throughout the nervous system

    ALLOREACTIVE T LYMPHOCYTES CULTURED FROM LIVER TRANSPLANT BIOPSIES: ASSOCIATIONS OF HLA SPECIFICITY WITH CLINICOPATHOLOGICAL FINDINGS.

    Get PDF
    Lymphocyte cultures grown from liver allograft biopsies were shown to exhibit alloreactivity towards donor cells as measured by primed lymphocyte testing (PLT). The PLT specificity was determined in assays using HLA typed panel cells and/or by inhibition testing with HLA specific monoclonal antibodies. Certain cultures exhibited PLT specificity towards class I HLA antigens of the donor, whereas others were specific for class II HLA antigens or recognized mixtures of class I and II antigens. These PLT specificity patterns were compared with clinical, histological and laboratory findings on the liver transplant patients at the time of the biopsy. Biopsies yielding class I specific PLT cells were taken generally during the earlier posttransplant period, whereas class II specific cells were grown from later biopsies. There was no significant correlation of the PLT specificity towards class I vs II antigens with the levels of total or direct bilirubin, serum glutamate oxaloacetic transaminase (SGOT), and serum glutamate pyruvate transaminase (SGPT), although a trend towards higher values was noted for biopsies presenting with a class II specific infiltrate. However, the levels of gamma glutamyl transpeptidase (GGTP) and alkaline phosphatase (AP) were significantly increased when biopsies yielded class II specific rather than class I specific PLT cells. Biopsy histology showed more damage to bile duct epithelium in association with class II PLT specificity whereas intense but often reversible infiltrates were found in biopsies yielding class I specific cells. The elevated GGTP and AP levels are probably related to the interaction of class II specific T cells with bile duct epithelium, which has been shown to express induced class II HLA antigens on their cell surface

    Driven Spin Systems as Quantum Thermodynamic Machines: Fundamental Limits

    Full text link
    We show that coupled two level systems like qubits studied in quantum information can be used as a thermodynamic machine. At least three qubits or spins are necessary and arranged in a chain. The system is interfaced between two split baths and the working spin in the middle is externally driven. The machine performs Carnot-type cycles and is able to work as heat pump or engine depending on the temperature difference of the baths ΔT\Delta T and the energy differences in the spin system ΔE\Delta E. It can be shown that the efficiency is a function of ΔT\Delta T and ΔE\Delta E.Comment: 9 pages, 11 figures, accepted for publication in Phys. Rev.
    • …
    corecore